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Thermoelastic response of a fin exhibiting elliptic thickness profile:
An analytical solution
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Abstract

A thermoelastic analytical solution of a variable thickness cooling fin problem is presented. A variable thickness annular fin mounted on a hot
rotating rigid shaft is considered. The thickness of the fin is assumed to vary radially in a continuously variable nonlinear elliptic form. An energy
equation that accounts for the conduction, convective heat loss from peripheral and edge surfaces, thickness variation and rotation is adopted. The
thermoelastic equation is obtained under formal assumptions of plane stress and small strains. For given heat and centrifugal loads the temperature
distribution in the fin and the corresponding state of stress are obtained by means of the analytical solutions of energy and thermoelastic equations,
respectively.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In a recent investigation by Eraslan and Akis [1], a realis-
tic conduction–convection mechanism to describe the heat flow
in uniform thickness annular fins was proposed. This mecha-
nism was used in [1] to predict the elastoplastic stress state in a
fin mounted on a rigid rotating shaft. An extension of this work
was later realized by Eraslan and Kartal [2] to include a fin of
parabolic thickness with temperature dependent material prop-
erties. The latter theoretical investigation was computational;
however, some analytical results based on earlier solutions [3]
were also presented.

This work represents an extension of [1] to include a variable
thickness fin and presents an exclusive analytical treatment of
a similar problem in the elastic state of stress. A variable thick-
ness annular fin mounted on a rigid shaft is considered. The
geometry of the shaft-fin assembly and the coordinate system
are depicted in Fig. 1. The shaft is assumed to be kept at con-
stant temperature. Heat is transferred from hot shaft to annular
fin and from fin to surroundings. Moreover, the assembly may
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rotate about the axis of the shaft. The fin thickness h varies in
the radial direction r according to

h(r) = h0

√
1 − n

(
r

b

)2

(1)

in which n is a geometric parameter (0 � n < 1), b is the radius
of the fin and h0 is the thickness at the axis of the fin. The el-
liptic annular fin of inner radius a/b = 0.2 for n = 0.7 is shown
in Fig. 2. The objective is to predict the elastic response of the
elliptic fin under nonuniform heating or both heating and cen-
trifugation.

Estimation of the stresses, vibrations and heat transfer in
disks/fins induced by centrifugation or nonuniform heating or
both is an important topic due to a large number of applica-
tions in many branches of engineering [4–10]. Therefore, the
interest of researchers in the subject has never ceased. How-
ever, there appear only a few investigations in the literature
on the deformations and heat transfer in disks/fins subjected to
both centrifugal force and radial temperature gradients. In ad-
dition to the ones mentioned above [1,2], theoretical studies by
Alujevic et al. [11,12], by Parmaksızoğlu and Güven [13], and
experimental work by Saniei and Yan [14] may be quoted as
closely related references.



A.N. Eraslan, T. Tokdemir / International Journal of Thermal Sciences 47 (2008) 274–281 275
Fig. 1. The geometry of the shaft-fin assembly and the coordinate system.

Fig. 2. Elliptic thickness profile for a fin of inner radius a/b = 0.2 for n = 0.7.

2. Temperature distribution in the fin

For constant thermal conductivity k of the fin material, the
energy equation given in Ref. [2] takes the form

d2Θ

dr2
+

[
1

r
+ h′(r)

h(r)

]
dΘ

dr
− 2Hc

kh(r)
Θ = 0 (2)

where Θ(r) = T (r)− T0 is the temperature difference between
the surface of the fin and the ambient temperature, Hc is the
convective heat transfer coefficient, and a prime denotes differ-
entiation with respect to the radial coordinate r . Hc is a function
of both the radial position r and angular speed ω, given by
Hc(r,ω) = A + Bωr with A and B being parameters. Substi-
tuting the thickness function h from Eq. (1) and Hc into Eq. (2),
the energy equation becomes

d2Θ

dr2
+

[
1

r
− nr

b2(1 − nr2

b2 )

]
dΘ

dr
− 2(A + Bωr)

kh0

√
1 − nr2

2

Θ = 0 (3)
b

The general solution of this differential equation is obtained by
reduction of order as

Θ(r) = C1P(r) + C2Q(r) (4)

where Ci is an arbitrary constant and

P(r) =
∞∑

k=0

akr
k (5)

The first few coefficients are

a0 = 1 (6)

a1 = 0 (7)

a2 = A

2kh0
(8)

a3 = 2Bω

9kh0
(9)

a4 = A(Ab2 + 2knh0)

16b2k2h2
0

(10)

a5 = Bω(13Ab2 + 15knh0)

225b2k2h2
0

(11)

a6 = 9A(A2b4 + 8Ab2knh0 + 18k2n2h2
0) + 32b4B2kh0ω

2

2592b4k3h3
0

(12)

a7 = Bω(433A2b4 + 2510Ab2knh0 + 3150k2n2h2
0)

88 200b4k3h3
0

(13)

a8 = [
225A

(
A3b6 + 20A2b4knh0 + 150Ab2k2n2h2

0

+ 360k3n3h3
0

) + 32b4B2kh0ω
2(142Ab2 + 435knh0

)]/(
2 073 600b6k4h4

0

)
(14)

and

Q(r) = P(r)

[
ln r

b
+

∞∑
k=0

dkr
k

]
(15)

with the following coefficients

d0 = 0 (16)

d1 = 0 (17)

d2 = n − 4b2a2

4b3
(18)

d3 = −2a3

3b
(19)

d4 = 3n2 − 8b2na2 + 24b4a2
2 − 16b4a4

32b5
(20)

d5 = −na3 − 6b2a2a3 + 2b2a5

5b3
(21)

d6 = [
5n3 − 12b2n2a2 + 24b4na2

2 − 64b6a3
2 + 48b6a2

3

− 16b4na4 + 96b6a2a4 − 32b6a6
]/(

96b7) (22)

d7 = −(
3n2a3 − 12b2na2a3 + 48b4a2

2a3 − 24b4a3a4

+ 4b2na5 − 24b4a2a5 + 8b4a7
)/(

28b5) (23)
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d8 = [
35n4 − 80b2n3a2 + 144b4n2a2

2 − 256b6na3
2 + 640b8a4

2

+ 192b6na2
3 − 1536b8a2a

2
3 − 96b4n2a4 + 384b6na2a4

− 1536b8a2
2a4 + 384b8a2

4 + 768b8a3a5 − 128b6na6

+ 768b8a2a6 − 256b8a8
]/(

1024b9) (24)

It is noted that these coefficients and higher order ones can be
generated by the use of symbolic engine Maple with the series
option turned on [15]. In view of Eq. (4), the temperature dis-
tribution in the fin is

T (r) = C1P(r) + C2Q(r) + T0 (25)

Integration constants C1 and C2 are determined by using the
following boundary conditions (see Fig. 1):

T (a) = Tb and − k
dT

dr

∣∣∣∣
r=b

= Hc(b,ω)
[
T (b) − T0

]
(26)

The result is

C1 = −(Tb − T0)
[
Hc(b,ω)Q(b) + kQ′(b)

]/(
Hc(b,ω)P (b)Q(a) + kQ(a)P ′(b)

− P(a)
[
Hc(b,ω)Q(b) + kQ′(b)

])
(27)

C2 = (Tb − T0)
[
Hc(b,ω)P (b) + kP ′(b)

]/(
Hc(b,ω)P (b)Q(a) + kQ(a)P ′(b)

− P(a)
[
Hc(b,ω)Q(b) + kQ′(b)

])
(28)

For the presentation of calculated temperature distributions, it is
convenient to introduce the following dimensionless variables:

Radial coordinate: r = r

b
(29)

Temperature: θ = T − T0

Tb − T0
(30)

Temperature gradient: GT = dT/dr

dT/dr|{r=a, ω=0}
(31)

Angular speed: Ω = bω

√
ρ

σ0
(32)

Heat load: q = EαTb

σ0 log( b
a
)

(33)

Heat transfer coefficient: Hc = 1 + BΩr; B = B

A

√
σ0

ρ
(34)

where E is the modulus of elasticity, α the coefficient of ther-
mal expansion, σ0 the yield limit and ρ the mass density.

First, the convergence of the series solution, Eq. (25), is
inspected. Preliminary calculations indicate that the solution
converges very rapidly for a wide range of parameters; never-
theless, it is affected mostly by the values of the parameters n

and Ω . Using the parameters a = a/b = 0.2, h0 = h0/b = 0.2
(thin fin), B = 1.5 and assigning q = 1, the temperatures at the
edge of the fin, θ(1), are calculated with an increasing number
of terms in the series and the corresponding relative percent er-
rors are calculated by the use of |θ(1) − θT (1)|/θT (1) × 100.
Here, θT (1) represents the solution with 35 terms. The results
of these calculations are presented in Fig. 3(a) for n = 0.4, and
in Fig. 3(b) for n = 0.6 using Ω as a parameter. As seen in these
figures, a reasonably accurate solution may be obtained by in-
cluding the first 20 terms (Fig. 3(b)) though 35 terms are used
throughout this work to assure accuracy.

The analytical results for θT (1) are also compared with nu-
merical results based on the Shooting solution of Eq. (3). As
explained in Refs. [1,2], when incorporated with the state-of-
the-art ODE solvers [16] such solutions produce results pos-
sessing very high order accuracy. For the same set of parameters
and for n = 0.6, θT (1) values corresponding to Ω = 0, 1, and
2 are 0.592760, 0.382905, and 0.273655, respectively. On the
other hand, the matching shooting results are θ(1) = 0.592750,
0.382894, and 0.273644. Both solutions agree well.

To give an idea about the magnitudes of some variables of
engineering interest, we list several numerical values. Material
properties of steel: k = 45 W/m ◦C, E = 200 GPa, α = 11.7 ×
10−6/◦C, σ0 = 410 MPa, and ρ = 7800 kg/m3 are used for this
purpose. The parameter set a = 0.2, n = 0.6, h0 = 0.2, and
B = 1.5 is reconsidered, and T0 = 0 is assigned. The heat load
q = 1 gives rise to temperatures T (a) = 122.5 ◦C, and T (b) =
72.6 ◦C for Ω = 0, and T (a) = 122.5 ◦C, and T (b) = 33.5 ◦C
for Ω = 2. Furthermore, for steel fins the speeds Ω = 1, and 2
imply 229.3 rad/s and 458.5 rad/s, actual rotation speeds, re-
spectively.

Using the parameters a = 0.2, n = 0.6, h0 = 0.2, and B =
1.5, and setting q = 1, temperature distributions and corre-
sponding temperature gradients are calculated at various angu-
lar velocities ranging from Ω = 0 to Ω = 1.5 and the results
are plotted in Figs. 4(a) and (b). Fig. 4(a) shows the tempera-
ture profiles using the angular speed as a parameter. Due to the
increasing rate of convective heat transfer, the lowest temper-
ature at the edge of the disk is obtained for the largest angular
speed. Fig. 4(b) shows the radial variation of temperature gradi-
ent GT at various rotation speeds. Larger gradients are obtained
as the angular speed is increased.

3. Thermoelastic formulation and solution

The notation and basic equations of elasticity as given by
Timoshenko and Goodier [5] are used. A state of plane stress
and infinitesimal deformations are assumed. For plane stress,
the solution of the displacement-stress relations

u

r
= 1

E
(σθ − νσr) + αT (35)

du

dr
= 1

E
(σr − νσθ ) + αT (36)

for σr and σθ gives

σr = E

1 − ν2

[
νu

r
+ u′

]
− EαT

1 − ν
(37)

σθ = E

1 − ν2

[
u

r
+ νu′

]
− EαT

1 − ν
(38)

where u is the radial displacement, σj the normal stress, ν the
Poisson’s ratio and T the temperature gradient. Substitution of
these stresses and the fin profile (1), in the equation of mo-
tion [5]
d

(hrσr) − hσθ = −hρω2r2 (39)

dr
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(a) (b)

Fig. 3. Variation of relative percent error in the edge temperature with the number of terms (a) for n = 0.4, (b) for n = 0.6.
yields the governing equation for the radial displacement.

r2(b2 − nr2)d2u

dr2
+ r

(
b2 − 2nr2)du

dr
− [

b2 − (1 − ν)nr2]u
= − (b2 − nr2)(1 − ν2)ρω2r3

E
− nα(1 + ν)r3T

+ α
(
b2 − nr2)(1 + ν)r2 dT

dr
(40)

Eq. (40) is a hypergeometric differential equation and can be
solved by introducing a new variable z = b2 − nr2 and using
the transformation u(r) = ry(z). The homogeneous equation is
transformed into

z
(
b2 − z

)d2y

dz2
+ 1

2

(
b2 − 5z

)dy

dz
− (1 + ν)

4
y = 0 (41)

This is the standard form of the hypergeometric differential
equation with the solution [17]

y(z) = C3F

(
α,β, δ; z

b2

)
+ C4

√
zF

(
α − δ + 1, β − δ + 1,2 − δ; z

b2

)
(42)

where F(α,β, δ; z) is the hypergeometric function defined by

F(α,β, δ; z) = 1 + αβ
z + α(α + 1)β(β + 1)

z2
δ1! δ(δ + 1)2!
+α(α + 1)(α + 2)β(β + 1)(β + 2)

δ(δ + 1)(δ + 2)3! z3 + · · · (43)

The series F(α,β, δ; z) converges slowly for |z| � 1 provided
that δ − (α + β) > −1. Since the problem under consideration
is a realistic physical problem, these conditions are always sat-
isfied and the series is always convergent. The arguments α, β

and δ of the hypergeometric function F in Eq. (42) have the
following meanings:

α = 3

4
− 1

4

√
5 − 4ν (44)

β = 3

4
+ 1

4

√
5 − 4ν (45)

δ = 1

2
(46)

The general solution for the radial displacement can thus be
expressed as

u(r) = C3P(r) + C4Q(r) + R(r) (47)

where

P(r) = rF

(
α,β, δ;1 − n

(
r

b

)2)
(48)

Q(r) = r
√

b2 − nr2

× F

(
α − δ + 1, β − δ + 1,2 − δ;1 − n

(
r
)2)

(49)

b
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(a) (b)

Fig. 4. (a) Temperature profiles, (b) temperature gradient profiles at various rotation speeds.
and R(r) represents the particular integral solution. R is deter-
mined by the method of variation of parameters. It is assumed
to be of the form

R(r) = Û1(r)P (r) + Û2(r)Q(r) (50)

where

Û1(r) = −
r∫

a

G1(λ)dλ; Û2(r) =
r∫

a

G2(λ)dλ (51)

G1(r) = Q(r)f (r)

Wro(r)
; G2(r) = P(r)f (r)

Wro(r)
(52)

f (r) = − (1 − ν2)ρω2r

E
− nα(1 + ν)rT

b2 − nr2
+ α(1 + ν)

dT

dr
(53)

Wro(r) = P(r)Q′(r) − Q(r)P ′(r) (54)

Since the integrands in Eq. (51) are polynomials, the integrals
can accurately be evaluated by expanding them into series at
Gaussian points [7]. Hence, Û1 and Û2 take the following forms

Û1(r) = r − a

2

N∑
i=1

φi × G1

(
(r − a)Xi + r + a

2

)
(55)

Û2(r) = r − a

2

N∑
i=1

φi × G2

(
(r − a)Xi + r + a

2

)
(56)

where the values of φi and Xi can be found in [18] for possi-
ble values of N used in practice. In the following calculations
N = 20. With the form (47) of the radial displacement, the
stresses become

σr = E

1 − ν2

[
C3

(
νP

r
+ P ′

)
+ C4

(
νQ

r
+ Q′

)
+ νR

r
+ R′

]
− EαT

1 − ν
(57)

σθ = E

1 − ν2

[
C3

(
P

r
+ νP ′

)
+ C4

(
Q

r
+ νQ′

)
+ R

r
+ νR′

]
− EαT

1 − ν
(58)

The thermoelastic solution is completed by applying the bound-
ary conditions. Since an elliptic annular fin mounted on a rigid
shaft is considered, the boundary conditions become u(a) = 0
and σr(b) = 0. By noting that R(a) = 0, the integration con-
stants are evaluated as

C3 = − Q(a)[νR(b) + bR′(b) − bα(1 + ν)T (b)]
Q(a)[νP (b) + bP ′(b)] − P(a)[νQ(b) + bQ′(b)]

(59)

C4 = P(a)[νR(b) + bR′(b) − bα(1 + ν)T (b)]
Q(a)[νP (b) + bP ′(b)] − P(a)[νQ(b) + bQ′(b)] (60)

Note also that for n = 0 and T (r) = Tb = T0, Eq. (40) reduces
to

r2 d2u

2
+ r

du − u = − (1 − ν2)ρω2r3

(61)

dr dr E
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(a) (b)

Fig. 5. Elastic response of (a) a stationary fin, (b) a rotating fin.
and assumes the general solution

u(r) = Ĉ3r + Ĉ4

r
− (1 − ν2)ρω2r3

8E
(62)

which is the well-known solution of rotating isothermal uni-
form thickness disk [5].

To present the results of thermoelastic calculations we use
nondimensional stress: σj = σj/σ0, and radial displacement:
u = uE/(bσ0). Moreover, we introduce the nondimensional
stress variable φY as

φY =
√

σ 2
r − σ rσ θ + σ 2

θ (63)

Note that according to the von Mises’ yield criterion [19],
φY (rY ) = 1 at an elastic-plastic border implying the onset of
plasticization at that radial location, and φY < 1 in the elastic
region. In the following calculations ν = 0.3.

For a stationary thin fin (Ω = 0, h0 = 0.2) of inner radius
a = 0.3 with the shape parameter n = 0.5, the elastic limit heat
load is determined as q = 1.62558. Fig. 5(a) depicts the corre-
sponding distributions of the response variables: σ r , σθ , u, φY ,
and θ . Since expansion at the rigid shaft-annular fin interface
is not allowed, the circumferential stress turns out to be com-
pressive. By following the variation of φY , it is seen in Fig. 5(a)
that the fin material fails with respect to plastic deformation at
the shaft-fin interface since φY = 1 at this radial position. If the
speed of rotation is slowly increased from Ω = 0 to Ω = 1, the
fin yields at a much lower heat load calculated as q = 1.19474.
The consequent distributions of the response variables are plot-
ted in Fig. 5(b). The superposition of thermal and centrifugal
effects can be observed by comparing Figs. 5(a) and (b). This
superposition, as well as the effect of n on the calculated elastic
limits, can be evaluated by examining the results of a paramet-
ric analysis shown in Fig. 6. In this figure, using a = 0.3 and
B = 1.6, elastic limit rotation speeds leading to φY (a) = 1 are
calculated for different values of the shape parameter n using
the heat load q as a parameter. As seen in Fig. 6, for a given
Ω , the fin can withstand higher heat loads elastically if n is in-
creased.

The approach described by Eqs. (55)–(56) to determine the
particular solution, Eq. (50), was suggested by Uğural and Fen-
ster [7] and used successfully in studies [3,20–22] in order to
derive consistent analytical solutions to highly intricate rotating
partially plastic solid disk problems. However, a discussion on
this issue could not be found in the related literature. To com-
ment on it, an analysis is carried out here. The parameter set
a = 0.3, n = 0.5, and B = 1.7 is chosen. The elastic limit heat
loads for Ω = 0, and Ω = 1 are calculated by using N = 20 and
the results are cross checked with those of the Shooting solution
of Eq. (40). By using a different number of Gaussian points, the
elastic limit is determined and the corresponding relative per-
cent error is calculated. The results of these calculations can be
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Fig. 6. Variation of elastic limit angular speeds with n for different heat loads.

examined in Fig. 7. As seen in this figure, a reasonably accurate
solution seems to be possible even with N = 3.

4. Concluding remarks

Based on the assumptions of plane stress, infinitesimal de-
formations, and low rotation frequencies, a thermoelastic an-
alytical solution of a variable thickness cooling fin has been
presented. An elliptic annular fin mounted on a hot rigid shaft,
which may rotate about its axis, has been considered. A series
solution to the energy equation that accounts for the conduction,
convection, thickness variation and rotation has been obtained
and its rate of convergence has been assessed. Displacement
formulation has been used to construct the thermoelastic equa-
tion. This equation turns out to be of hypergeometric-type, and
its homogeneous solution has been obtained in terms of hy-
pergeometric functions by the introduction of an elliptic trans-
formation. The method of variation of parameters has been
combined with Gaussian integration to obtain the particular
solution. Since the integrands involved are polynomials, this
procedure does not affect the accuracy of the solution in any
way.

The effect of rotation on the thermal and mechanical re-
sponses of the fin has been investigated. Larger temperature
gradients are obtained as the rotation frequency is increased.
Under purely thermal loading of the fin, the circumferential
stress component is compressive in the majority of the fin.
Fig. 7. Variation of relative percent error in the elastic limit heat load with the
number of Gaussian points.

A transition from compressive to tensile stress states occurs
as the thermally loaded fin is rotated. The fin can withstand
higher heat loads or rotation speeds elastically if its inner-to-
outer thickness ratio, i.e. h(a)/h(b), is increased.
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[7] A.C. Uğural, S.K. Fenster, Advanced Strength and Applied Elasticity,
third ed., Prentice-Hall International, London, 1995.



A.N. Eraslan, T. Tokdemir / International Journal of Thermal Sciences 47 (2008) 274–281 281
[8] C.D. Mote, Theory of thermal natural frequency variations in disks, Inter-
national Journal of Mechanical Sciences 8 (8) (1966) 547–557.

[9] A.C.J. Luo, C.D. Mote, Nonlinear vibration of rotating thin disks, Journal
of Vibration and Acoustics—Trans. ASME 122 (4) (2000) 376–383.

[10] N. Saniei, A.C.J. Luo, Thermally induced, nonlinear vibrations of rotating
disks, Nonlinear Dynamics 26 (4) (2001) 393–409.

[11] A. Alujevic, J. Legat, J. Zupec, Thermal yield of a rotating hyperbolic disk,
The Journal of Applied Mathematics and Mechanics (ZAMM) 73 (1993)
T283–T287.

[12] A. Alujevic, P. Les, J. Zupec, Plasticity of a thermally loaded rotating
hyperbolic disk, The Journal of Applied Mathematics and Mechanics
(ZAMM) 73 (1993) T287–T290.
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